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CHAPTER 1
INTRODUCTION

1.1 Motivation

The spread of the pulmonary disease among humamnsesy rapid process
and it stands as the third highest killer in theiteth States of America. It is
primarily caused bynarrowing or blocking the airways whickubjectspatients to
increasing difficulties in exhaling and getting sufficientygen supply. Statistically,
among the lung diseases, chronic obstructive pulmonary disease J@@&Bsthma are
reported as the most notorious ones with nearly 14.5 million Amertiageaosed with
COPD [1] and 34.1 million Americans with asthma [2]. COPD comgridechronic
bronchitis (in which the bronchial tubes get scarred and inflamedg@pthysema (in
which particular airways and air sacs get stretched out aadHeg natural shape). An
asthma attack causes the swelling of the airway liging contraction of the muscle
surrounding the bronchi leading to the narrowing of the airway.efdwer, pulmonary
diseases resulting from the dysfunctioning of airways highligl urgent necessity of
analyzing airways for efficient diagnosis.

In today’s world of biomedical technology, advanced imaging tectes have
emerged as indispensable for the diagnosis of these varadtipalmonary disease,
following which therapeutic drugs can be administered to the pafiénical assessment
of the lung function has been significantly enhanced by measiengffect of drugs and
infectious agents on different lung models of diseased micec@uent technological
sophistication enables us to measure these precise indicesgofuhation leading to
important insights into the mechanisms of lung disease.

Computed tomography (CT) scanning allows us to obtain detailed snzdghe

pulmonary anatomy including the airways. Airway lumen in the i@dges can then be

www.manaraa.com



identified through airway tree segmentation which can be performatually by an
image analyst. However, the complexity of the tree makes theegs of manual
segmentation tedious, time-consuming, and variant across individualsoninast,
computer aided processing and analyzing of CT images enabéesarate segmentation
of the airway tree. But computer aided processing introducefeeedif set of challenges
stemming from image noise, ‘partial volume effect’, and texsim@larity of the airway
and parenchyma [3]. The resultant airway segmentation, whetingrdaat manually or
through the aid of computers, can then be used to measure airway geonndyrgjrstay
reactivity, and guide surgical interventions.

The thesis addresses these problems and suggests a fully adttenateque for
segmenting the airway tree in three-dimensional (3-D)ov&F images of the thorax of
an ex-vivo mouse. This novel technique is a several step approach consisting of:

1. The feature calculation of individual voxels of the micro-CT image,

2. Selection of the best features for classification (from step 1.),

3. K-nearest neighbor (KNN) classification of voxels by the bestteeléeatures

(from step 2.) and

4. Region growing segmentation of the KNN classified probability image.

KNN classification algorithm has been used for the clasdticaif the voxels of
the image (into airway and non-airway voxels) based on the irrageé¢s, the results of
which have then been processed using the region growing segoreraigorithm to
obtain the final set of results for segmentation. The segohanteray of the ex-vivo
mouse lung volume is analyzed using a commercial software patiagktain the
measurements. The following chapter will go on to explain thetusecro CT imaging
and ex-vivo airway segmentation of the mouse lung as deployed in thee cafuthe

current research.
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CHAPTER 2
BACKGROUND AND SIGNIFICANCE

2.1 Pulmonary anatomy and physiology of the mouse lung

The lung is an important organ responsible for the gaseous gechaair which
circulates in and out of the body. The mouse lung can be divided intaytieand left
lungs which can then be further subdivided into four lobes in the tght(Apical lobe,
Azygous lobe, Cardiac lobe and Diaphramatic lobe) and a single ldibe ileft lung
(Left lobe) as shown in figure 1. The total lung capacity ofrtioeise has been reported
as 1ml [27]. In the mouse, 18% of the lung is comprised of parenchissaé while
11% is composed of airway [5]. The overall anatomy of the aifaasya monopodial
pattern with very few generations (13-17) and a relatively ldugeen at the base of the

lung compared to the humans.

Figure 1. Gross Anatomy of mouse lung

1. Larynx, 2.Thyroids, 3.Trachea, 4.Apical Lobe, 5.Azygous Lobe, 6. Cardiac
Lobe, 7. Diaphramatic Lobe, 8. Left lobe. This figure is from [27].
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The lung functioning is greatly aided by its architecture tbasists of the airway
tree serving as conduits of air. Both the sides of the lung havéraidehi projecting off
from the main bronchi in three rows: Ventral row — consist ofidhgest branches and
runs into the ventral periphery of the lungs, Dorsal row — whishsheller branches that
supplies lung tissue adjacent to the vertebral column, and the Madialhich feeds the

lung directed toward the posterior region of the mediastinum [6].

2.2 Mouse Models for Pulmonary Disease of Humans

Human Pulmonary Disease research has been greatly boosted dryoth®us
volume of information obtained from the genes of the mouse. Thpedeesearch of the
human diseased lung has been made possible by the use of mouse miodelstigate
and study the genetic basis of the disease.

Mouse models that mimic human disease play a vital role in undéirsgathe
cause and origin of cancer. For example, mouse models have been uvesstigate
agents that cause Human Melanoma and Lung Cancer [28]. Mice amogtevidely
used model for pulmonary research due to its close resemblanbe twuman lung
physiologically and genetically. Also, they can be easily stljdiaderstood and defined
genetically. They also respond and develop pulmonary diseasesanreer very similar
to human beings. Apart from being genetically similar to humans, tbesenis
inexpensive to procure, and can be easily housed. Moreover, their ag@andgex
environmental factors can be easily controlled (unlike in the aibamans), and their
quick supply readily ensured (because of their have short gestatiodspehich allows
multiple generations to be acquired in a short period of time)Tfgrefore, mouse is

genetically the best characterized of all mammals.
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2.3 Image Acquisition using Micro-Computed

Tomography (Micro-CT)

Micro CT is a technique used to produce high resolution datasety xisays
through a minimally invasive system for the screening of samathals. The imaging of
an ex-vivo mouse lung volume using Micro-CT eliminates the problermation
artifacts, thus allowing detailed fixed lung investigation. Fikety Micro-CT imaging
enables early detection of lung diseases and also helps receftetiteof drugs through
a longitudinal study. This is made possible through the reductioncaf épot size (by
decreasing the X-ray output power) and the increase of timalsig noise ratio (by
increasing the exposure time). This technique is particulahbfutén the case of small
animals. The radio density image information obtained from Mifoadds to the

understanding of the physiological measures by usual methods for aspéysintpgy.

Figure 2. Siemens Imtek Micro-CAT Il scanner
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During the image acquisition, X-rays pass through the small animal eaugpd.
MicroCAT IlI® (Siemens Preclinical Solutions) Micro-Computed Tomogyapbanner is
a state-of-the-art tool for investigating morphology and physiologyiving small
laboratory animals (up to 7 cm in diameter). This equipment allowsnvasive high-
resolution (down to 27 microns) imaging of the same living animat bine to perform

lateral studies, such as to monitor the progression of disease or the respons@yo ther

2.5 Previous Work

There have been many methods proposed for the automatic segmeuitatien
human airway tree. Some of the previous work in segmenting the humaysafrom
CT scans includes the algorithms of fuzzy connectivity, region gipwnethods,
mathematical morphology methods and hybrid methods (region growing and
mathematical morphology). The implementation of fuzzy logic me{Bbdor airway-
tree detection increased the specificity of detection witboatpromising its sensitivity.
However, the method was susceptible to movement artifacts and/\a@radtanges in the
pathological responses in the lung function. Another segmentation mpeéntmtmed
using the algorithm of grayscale morphology [3] segments theagitige on 2D slices
which can then be reconstructed into a connected 3-D airway thee.additional
reconstruction proved the method to be less sensitive to detechandmanches. Also,
this algorithm is greatly influenced by the selection of morphofdgparameters like
endpoints in larger and smaller airways.

The human airway segmentation algorithm is most commonly dotfeelnggion
growing approach but they often suffer leakages and/or disconnectida theesconstant
parameters used. This problem was solved by the segmentingwhagsain an adaptive

region growing approach [9].
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In contrast to the above methods of image segmentation, there hasa been
significant amount of work put into finding the region of interest basedhe pixel
classification. For example, Loog et al. [23] proposed a methoectassify every pixel
of an initial segmentation on the original features and contextioamation (class labels
of the neighboring pixels). Another work done in the field of OphthalnyolygMerikel
[24] et al. was to segment the optic disc based on the combinatgnamf search and
pixel classification method. In this method, the pixel classificn generated the
probability image whose probability is maximized by a cost funaticihe graph search
algorithm. A most recent work by Xu [25] detected the optic daswl fovea
simultaneously by using their mutual information and k-nearesthbergregression.
Voxel classification method has also been applied in the segnoentdtperiprosthetic
tissues in the CT scans [26]. This is one of the first autoralgarithms developed to
segment the tissues correctly in spite of the low densitiesalmnduces artifacts and
inter-patient and inter-scan variation.

In this context of segmenting the region of interest based oreimggnsities, Lo
et al. [12] proposed a voxel based classification method for sgmmehe airway tree of
human lung using a complex appearance model. This algorithm & traseset of local
image appearance features and K- nearest neighbor classifidéis framework for the
segmentation of human airway tree is most relevant to the preedntvhich has been
extended to perform on excised mouse lung volume micro-CT images.

Therefore, the direct translation of the human airway tree eeigion
algorithms cannot be done to mice micro-CT images because of the poor imatyeofuali
the image and complexity of the airway tree structure. There been two recent
algorithms developed for the automatic segmentation of airfvags the in-vivo mice
micro-CT scans.

The most recent work of Shi et al. [10] aims at segmentingitiaays of an in-

vivo mouse lung volume scan using the gray-scale morphology propeitg ahages.
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This algorithm segments the airways lumen in 2D transveiisaksihich are then used
to reconstruct the full 3D tree. It uses a 3 step approache Ifirst step of preprocessing,
the image containing only the lung region is extracted and clqsexksdilation
performed. In the second step of morphology based 2D segmentatbnslea goes
though image processing stages of noise removal, local minimuonrdgtection and
region filtering. In the last step, the 2D segmented sliceseamonstructed into a 3D tree
by connected region growing. The major drawback of this segti@ntaethod was that
it is primarily dependent on a 2D segmentation which may leadotdgmns due to the
high variability of the shape of the airway lumens as seen msuessal slices. This
algorithm also requires a lot of human intervention in cases of noisy images.

Another recent work of Artaechevarria et al. [11] uses tanf@sching wave front
propagation that grows and divides into tree segments in an in-vivo rumgseolume
scan. This algorithm is based on several rules to guarantebghaave front propagates
only inside the airway region and does not leak to the lung pareachHymot only
segments the airway tree but also provides a reconstructiore dirtimchial tree, by
means of a list of hierarchically related segments. Thizrighgn is tested on normal and
diseased mice and shows high sensitivity and specificity valudsuyh, this method
detected the airways efficiently in minimal time, it waghty sensitive to image
resolution, motion artifacts and signal-to-noise ratio. Also, angrimption in the
propagation of wave due to image noise could not be detected leadmgsing some
branches of the tree.

Therefore, this thesis describes an automated ex-vivo ainggynentation
algorithm for micro-CT images of mouse lung which can therebyeaddhe problems of
previous methods and manual segmentation of the mouse lung airwayheeenajor
contribution of this algorithm, as described in the next sectioits i@pplication on an
excised mice lung micro-CT scans to detect greater number of airsvagengared to in-

vivo airway tree segmentation algorithms.
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2.6 Significance and Innovation of the work

Despite successes in the formulation of an in-vivo mouse airw@yesgation
algorithm (Figure 3(d)), doing the same for an ex-vivo mouse lurgur@ 3(c)), is
ridden with challenges because of the comparatively thinnds aadl also the minimal
contrast between the airways and the vasculature. This i® dioe tact that a fixed lung
as a similar contrast for the airways and vasculature asobatlem are filled with air
(unlike in the case of an in-vivo scan where the airways are filledaividnd vasculature
with blood. Also, the segmentation of an ex-vivo scan (Figure,Z@jvs the detection
of the terminal branches of airways which escape the in-vign g€igure 3(b)due to
the poor resolution and quality of the scans.

Apart from these primary advantages, the resultant segmented aan also be
used to find an approximate 3D region around the mediastinum, for smodtaihgg
segmentation. Also, airway tree anatomical generation is wsedtablish a consistent
criterion for airway inclusion or exclusion during lung segmentation.

An application of the ex-vivo airway segmentation technique desciibéde
chapters to follow can help clinicians by qualitatively improvihg precision of the
diagnosis, facilitating better investigation of its causes andejaamd ensuring a more
informed and effective administration of therapeutic drugs. By #mldressing the
relatively lesser explored and partially uncertain aspectghef diagnosis of this
dangerous disease, the technique explored in this thesis can céemiets of many

throughout the face of the world.
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Figure 3. Comparison between the ex-vivo and in-vivo scans (a) Ex-vivo microa@T s
(b) In-vivo micro- CT scan, with airway segmentation (c) Volume rembexevivo
segmented tree (d) Volume rendered ex-vivo segmented tree

www.manaraa.com



11

CHAPTER 3
METHODOLOGY

3.1 Overview

The biggest challenge in segmenting an ex-vivo mice airnegg is that (as
described in section 2.6) it has similar intensity for the airevad vasculature region.
This justifies the need to develop an algorithm which can distinghesm based on local
image appearance features. The major departure that this methodobkes from
previous models is that its classification of voxels is basecheriocal image feature
appearances unlike in cases of classification by voxel intensities [12].

However, the ground truth for training the classifier to segmenaiteays the
excised mouse lung volume scans was obtained by the slicecbynsinual analysis.
Initially, rough airway segmentation is obtained by an autons&tmentation tool of a
commercial software package. Then, the manual observer corregtedpmrfections in
all the slices by a manual airway contour editing tool. Thisllystoek a week’s time for
analysis of a single scan. In order to automate the whole proicesmual segmentation,
this research study proposes a method that classifies thes\ok@lairway and non-
airway kinds to arrive at the segmentation of an ex-vivo mousegimge. The overall
method in this work is as shown in figure 4.

For the purpose of this research, image acquisition of a fixedeexdisg
specimen is performed on a Siemens Imtek Micro-CAT Il, shawiigure 2, using the
following parameters: 50kV, 200microAmp, 2500ms exposure time, deteatungiof
2,720 projections over 270 degrees and 100 dark and 100 light images prior $caach
for calibration purposes. The reconstructed images were 1536 x 15361 ke’ in
size when reconstructed using a 28 micron isotropic voxels. Thedielew of the

images is 43 x 43 x 28 mm. Due to the very long exposure timendcessary to avoid
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any movement caused by the ventilating airflow inside the scamherefore the lungs
were placed inside a sealed tube suspended on a thin suture string within the tube to avoid
any contact to the walls of the tube.

An important step in preprocessing stage is to select the vimsgde the lung
region of the image for classification. As we know that airways areyalimaide the lung
region, analysis of the lung region voxels was sufficient for thethod. The lung
segmentation of the images was easy to obtain by semi-autoenadi automatic
methods. This step greatly helped in reducing computation time antbmneThe
processing method can be broadly divided into two phases — the trainireyapiththe
testing phase. In the training phase, the input is a micro-CTeimdgse features are
extracted as described in section 3.2. These features areost#reg KNN-classifier
(section 3.5) which gives the indices of the voxel that is clogeliftance) to the image
voxel to be classified. In the process of classifying voxdls airway and non-airway, a
probability image is generated. A region growing segmentatigorithm is performed
on the probability image obtained from the classifier in thevipus step. The final
segmentation results are adjusted with a manual threshold level for optmizati

The feature calculation method is described in section 3.2. Theigeletithe
sample of voxels is as shown in section 3.3. The method to selesulied features for
training the classifier is described in section 3.4. A detadescription of the KNN

classifier is given in section 3.5.

3.2 Feature Calculation

In order to classify the voxels depending on their texture, shapepeaiibhs,
different features have been calculated. The image todmeseed is representative of
the image intensities for the region growing approach. A skdbdfieatures that includes

21 different local image descriptors calculated at 7 different scaasad (Table 1).
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The scale determines the amount of smoothing (standard deviatioripefor
Gaussian kernel. The set includes the smoothing and derivative idesgeiptors
(Gaussian, first order derivative, second order derivative), rotljo invariant
descriptors (gradient magnitude, Laplacian and Gaussian curvature) and shapsdescr
(eigen values of Hessian, eigen values and eigen magnitude).

The following is the detailed description of all the above features used fafictdEs:

1. Convolution with Gaussian(L=1*G): In order to involve a smoothing
operator, feature images are calculated by convolving it wighGaussian
kernel at 7 different scales. The convolution of the Gaussian smoothing
operator G "blurs' the images and removes detail and noise. Theid@auss
filler uses the following normal distribution equation for calcagtithe
transformation to apply to each voxel in the image. The opergtoesents

the shape of a Gaussian ("bell-shaped') hump; figure 5.

v L K+ +
(x,y,z)_wex B — —0<X,Y,2<00

Figure 5. Gaussian distribution with mean 0 anch@ed Deviation
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Local Image Descriptor description | Name of thefeature Equation
Smoothing Convolution with Gaussiaf (L=1*G)
Derivative First order derivative (LX, Ly, LZ)
Derivative Second order derivative

(L Ly L Lo Lo L)

z,=xy? —xz?

Rotationally invariant descriptor

Gradient magnitude

(\/LXZ L2+ Lzzj

Rotationally invariant descriptor

Laplacian

(ﬁ“l—‘rﬁ“Z +/13)

Rotationally invariant descriptor

Gaussian curvature

(/11 >|</12 */13)

Shape descriptor

Eigen values of Hessian

(/11’/12’/13)

Shape descriptor

Eigen magnitude

Shape descriptor

Ratios of eigen values

[ (
A% 4|

[MZ A4 j
/12

il

) (el

4
A

|

Table 1. Table showing the set of 21 features calculated atéssgith corresponding equations

assuming | > [4,] > |4,
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2. First Order Derivative(LX,Ly,Lz): The first order derivative of an image
helps in marking the edges in the image. This cabse of the fact that at the
location of an edge there is a discontinuity in ititensity function or a very
steep gradient in the image. Thus by taking thévdeve of intensity across
the image and find points where the derivative isaximum the edges in the

image can be detected.

vi {6_1,6_1,8_'}
oX oy 0z

Thus the first order derivative of an image canfdend by the following

procedure:
a) Convolving the image with a Gaussian mask to smipthen

b) Calculate derivatives of the smoothed image.

3. Gradient Magnitude(\/Lx2 +L,7+ Lzz): This feature is mainly used to
determine the object contours and separation ofdgemous regions. In other

words, this feature is mainly used for edge detecin the image. It is given

by:

o35

4. Second order derivative(Lxx, Ly LoLy Lo Lyz): Another feature image that
marks an edge by a significant spatial changeesétond order derivative of
an image. Second order derivative information ckso &#e used to extract

local shape and orientation from a gray-scale imd@g$. When a second
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derivative of Gaussian is convolved with the image, get a second order
derivative image.

. Laplacian(4, + 4, + 4,): As we know, the Laplacian operator is a measure of
the second spatial derivative of an image. Thisufeaparticularly highlights
the regions of rapid intensity change and is tlweestised to detect edges. It is
very important in the scale-space analysis of thagie. To get the horizontal
and vertical and depth edges we look at secondateses in the x, y and z

directions. Thus, the Laplacian of an image is gilvg

0%l 0% 0l

Vi =—+—+
ox>  oy* oz

. Eigen values of Hessian(4,,4,,4,): According to Frangi [18] et al., the
vesselness measure is obtained on the basis tiiealkigen values of the
Hessian. The Hessian Matrix is a square matrix exfosd order partial
derivatives of a function. This eigen values of $i@s analysis is mainly used
to extract the principal directions in which the@ed order structure of the
image can be decomposed. An ellipsoid as showigurd 6 is an intuitive
tool for the design of geometric similarity measuesd thus can be used to
describe the second order structure of the image.

The elements of the Hessian matrix approximate sbeond order
derivatives, and therefore encode the shape inttwma both qualitative and
guantitative description of how the normal to ismface changes. The

computation of the second derivatives of an imagkly three terms.
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Figure 6. Second order ellipstedcribing the local principal directions
of curvature [18

While the Laplacian ignores one of them and comsidevery possible
orientation at once, the Hessian takes all threeageinto account and is
orientation-dependent. The three Eigen values @h#ssian matrix have the
following property:

a) Largest Hessian\{): The Largest Hessian operation determines the
orientation along which the second derivative isximal. It returns
this maximum as a signed number

b) SmallestHessian X3): the orientation for which the second derivative
is minimal can also be determined. T®allest Hessian operation

returns the minimum of the second derivative agi@esl number.

The feature images that take into account the Eugdures play a crucial role
in discriminating shape and orientation of struesurThe following are the

properties of the Eigen values as described bydgretral [18].
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e Bright tubular structures will have low; and large negative values of
A2 andiz. Conversely dark tubular structures will have a i@lue of
A and large positive values bf andis.

e Bright plate like structures has low values Jaf and A, and large
negative values dfs.

e Dark plate like structures has low values.pandi., and large positive
values ofis.

e Bright spherical (blob) like structures have allei eigen values as
large negative numbers.

e Dark spherical (blob) like structures have all éhfeigen values as
large positive numbers [17].

Therefore, these values are very helpful in disecrating the Bright or dark

tubular, blob or plate-like structures in the image

M Ao A3 Orientation Pattern

N N N Noisy, no preferred direction
L H- Plate-like structure (bright)

L L H+ Plate-like structure (dark)

L H- H- Tubular structure (bright)

L H+ H+ Tubular structure (dark)

H- H- H- Blob-like structure (bright)
H+ H+ H+ Blob-like structure (dark)

Table 2. The Eigen values representing the possible patterns in
the 3D image

Note: (H= High, L= Low, N = Noisy, usually small) +/- indicate

the sign of the Eigen value. Order@d|gB.,|< |As|. This table
is from [18].
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7. Gaussian Curvature(4, * 4, * A;) : Shape remains a major descriptive feature

of objects in the morphometry of an image. The Giamscurvature operator

is a shape descriptor in which a positive Gaussiamature value means the
surface is locally either a peak or a valley. Aateg value means the surface
locally has a saddle points. And a zero value méla@ssurface is flat in at

least one direction (i.e., both a plane and a dglinhave zero Gaussian
curvature) [18]. It is represented as the prodiucthe Eigen values of the

Hessian Matrix i.e.

GaussianCurvature = 4, x 4, x A,

8. Eigen Magnitude(\//il2 +,° +/132j: In the micro-CAT images of the mouse
lung, the airways are represented as bright tubstiarcture with a darker
background. According to [17], for an ideal tubusdructure in a 3D image
should have

a) The magnitude of the smallest Eigen vahug~ 0
b) The difference between the magnitudes of the sstdigien valuéis|
and the intermediate Eigen val@gshould be high i.e[lo<< |A3]
c) The intermediate Eigen valu@,] and the largest Eigen.{) value
should nearly be the same g~ A,
Thus, the Eigen magnitude image descriptor helpetermining the tubular

structures.

9. Ratios of Eigen Values. The following ratios of the Eigen values help in

distinguishing the shapes of the different struesai.8]:

a) The following ratio can be interpreted to considey deviation from a
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blob-like structure but cannot distinguish betweetine and a plate
like pattern. Thus, this ratio is maximum for alblke structure and
zero whenevei.;=0 or whenis and A, tend to vanish (as the ratio
(A3/|A1)/) help in defining the bounds because even whensétond

Eigen value is small its magnitude is always latgan the first)

4
42

The following set of ratios help in distinguishibgtween the plate-like
and line-like structures. For e.g. the ratio isozdor a line-like

structure. The above ratios are grey-level invariam they do not
depend on the intensity rescaling. Hence, thedariEsadetermine only

the geometric information in the image.

The following ratio is a normalization measure ddneness of the
structure in the image. Thus, this ratio is 1 foe significant Eigen
value); and two vanishing Eigen valugsandizand O if the two most

significant Eigen values are equal.

(|’11| B |’12|j
[ + (4,
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In all there are 21 different features for an imagich are calculated over equal
intervals of standard deviation values (sigma) ir@ndgrom 0.01 to 3. The 147 features
calculated for both training and testing imagestheeinputs for the KNN classifier (as
data and query points). The detailed descriptiothefselection of the best features from

the given set of 147 features is given in the eac3i.4.

3.3 Training Sample Selection

As explained in the previous section, the voxelamimage are classified into
airway and non-airway based on the features cakulilas per section 3.1 by the KNN
classifier. However, the research does not neeg¢ssdite classification of all the image
voxels as the few that are chosen (according t@tineiple explained in this section) are
representative of the whole sample of airway and-aiovay voxels. The process of
selecting a sample of voxels for the KNN classiti@ining instead of working on the
whole body of voxels is crucial given the constsanfi time and memory.

However, it is equally important to adopt a propeocedure for selecting the
sample. This is because a random selection woutfddnce a bias towards the larger
airways. This happens since voxels from the lagjaway automatically get selected
because they are present in larger volumes indhe. dn order to avoid such skewed
results, a distance transform is used during thgpkaselection process.

The Euclidean distance of all the airway voxelsrfra seed point in the Trachea
is calculated. The voxels are placed into a fixedhber of bins based on their sorted
distances. This ensures that all the voxels theckser to the Trachea are put into one
set of bins and those which are farther would beipto another set of bins. A fixed
percentage of airway voxels are selected as sarfiplaseach bin by random sampling.

In the context of this research, the non-airwayaredpas been taken to imply the

region surrounding the airways in the training @hakhe region around the airways is
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obtained by dilating the airway voxels over a radifi 7 voxels and then subtracting the
original airway voxels from them. The sample df tion-airway voxels from this region
is selected by random sampling.

The airway voxels and the non-airway voxels indeetral slice for the same scan

are shown in figure 7.

Airway Non-airway

Figure 7. Mid-slice sample selection of Airway d@idn-airway voxel

3.4 Feature Selection

Feature selection is the most critical stage inethire process of segmenting the
airways from the lung as this stage helps to deterrihe best suited set of features in a
way that make the precise and accurate classdicatf airways and non-airways
possible. Using all the features calculated as gmation 3.1 might not ensure the
accuracy of KNN classification. From the set of Jghtential features, the number of
features to be chosen for an accurate KNN-classifio is based on the improvement

curve of the criterion value. The process of deteimy the criterion value has been
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explained later in the chapter. The selection eflibst suited select features is stopped
when a saturation point is reached with respethéariterion value.

The procedure to select best features is basedecBeaquential Forward Selection
(SFS) floating search algorithm [19] as in figurel@tially the set of best features is
defined empty. As the selection process continthes features with the best combined
performance are added one after the other. The io@chlperformance of the features
added to the set is evaluated based on a criteature. The optimization criterion for
adding the feature to the set of select featur@sashed by maximizing the area under
the Receiver Operating Characteristic (ROC) curve.

The area under the ROC curve helps in determirfinlgei positives are ranked
higher than the negatives. It has an interestimpgy to give the costs for different
kinds of misclassification. The points on the ROGrve determine the optimum

threshold for the region growing algorithm in tiveat step of segmentation.

Empty feature set

:

AStITERATION || 2nd ITERATION || 3rd ITERATION

f B11 B1B2M
f2 B1f2 B1B212
3 B1f3 B1B213
(N

46 B1 B2 1145
l v r

&
combination with
max. area in each

iteration to best
feature set

Best feature set

B1B2B3 B4 B4.......

Figure 8. Sequential forward floating search predés f2 ...f147 — feature values and
B1, B2, B3 — best features selected in the previteuation)
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In case of identifying the set of features whichuaately classify the airway and
non-airway voxels of the image, each feature in@dhe training and testing data set is
added individually to the existing set of featufésr each feature that is added, the
voxels are fed into the KNN-classifier and a praligvalue is generated for each voxel
in the testing image. The probability image is tiwded into four different ranges of
intensity, that is, 0-0.2, 0-0.4, 0-0.6 and 0-&Bthe intermediate thresholded images
are compared with the ground-truth of the testingde to determine the true positives
and true negatives.

The sensitivity of the classification is determingyl taking the ratio of the true
positives (the number of correctly classified aywaxels) to the sum of true positives
and false negatives comparing to the ground-tratlage (the number of correctly
classified airway and incorrectly classified nonaay voxels). In other words it is given

by the formula:

number of true positives
number of true positives+number of falsenegatives

Sensitivity =

Similarly, the specificity of the classification determined by taking the ratio of
the true negatives (the number of correctly clasihon-airway voxels) to the sum of
false positives and true negatives in the grounthtimage (the number of incorrectly
classified airway and correctly classified non-aywoxels). In other words it is given

by the formula:

number of truenegatives

Soecificity= — -
number of false positives+ number of truenegatives
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The specificity and sensitivity values for threstesl images are calculated and
plotted. The graph plotted for the sensitivity dadgpecificity value for the four ranges of
values is the required ROC curve. The trapezoudal for calculating the area under the
ROC curve is implemented wherein the areas ofridevidual trapezoids formed by the
points in the graph are summed up to calculatéata area under the curve.

The optimization process to maximize the area utldeROC curve given by the
classification of the best combination of featusesarried out by including the feature to
combination of features which increases the aredltdw of the implementation of the

best feature selection is shown in figure 9.

3.5 KNN-Classification

In the k-nearest neighbor searching problem, th&lKKhssifier is used for a non-
parametric supervised pattern classification [ABle KNN classifier can classify the set
of given points in an n-dimensional space intoipaldr groups based on the distances
measured between the points in the training antdh¢edata sets. This classifier does not
require any prior knowledge about the distributiddnhe data points.

The points to be classified (testing data setfeado the KNN classifier such that
for any given query point, the KNN searches itsresaneighbors from the k-d tree data
structure formed by set of training points. The bemof nearest neighbors (k value) to
be obtained from the classifier is user defined aad be changed according to the
obtained criterion value for the feature selecpoocess as explained in section 3.2. KNN
classifier returns the indices of the nearest r®gh in the training data set which are
closest in distance to the given query point. Tinening time or the space of the KNN

classifier grows exponentially with an n-dimensilosyzace.
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Figure 9. Flow chart of selecting the set of besatdres by the Feature Selection method
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For example as shown in figure 10, there are d tdt@3 sample points and a
single query point scattered over in a 2 dimendideature space. The Minkowski
distances [13] or the simple Euclidean distancedch of the 23 sample points from the
guery point is calculated. In the above case, #efitned as 4. Among, the four nearest
neighbors of the test sample, the most frequestsdibel color is red, and thus the test

sample is assigned to the class A.

K=4
o
[ ]
.. ..
o
™~ o0
@
L
=
by
o A
= A
A
< A A
- A
A
A A 4 ® -Unlnouvn
A _ClassA
® -(lassB

Feature space 1

Figure 10. X-Y scatter plot of a 2 dimensional tgatspace with 23 samples for KNN-
classification (k = 4).

If a brute force process of computing the distarimetsveen the query point and
each of the data points is applied, then this neyob slow for the current application.

An Approximate nearest neighbor searching (ANNJdilg [13] that preprocesses the
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data points into kd-tree data structure from whiobarest neighbor distances are
computed is used to overcome this problem (se&ién

The classification of the voxels in the image it different classes — airway
and non-airway is performed to obtain a probabilityage for the final airway
segmentation. The classifier is trained on theufreatvalues of voxels from the two
different classes of voxels in the training imag&ach point from testing image is
classified into either of these classes dependimghe number and type of nearest
neighbors returned by the classifier. The grayescahlues for each voxel in the
probability image returned by the classifier reprdsthe chance of that voxel in the

testing image to be an airway or a non-airway.

3.6 Implementation details

In the feature calculation step, the convolved ienagth the Gaussian kernel is
calculated by applying a Gaussian filter is semdyatlong each direction of the image.
The filter in ITK “RecursiveGaussianimageFilter” pies the approximation of
convolution with the Gaussian in a single dimensi@everal of these filters are
concatenated to obtain smoothing in all directioflse same filter in ITK is used to
calculate the first and second order derivativethefimage [14]. The gradient magnitude
of the image is computed by convolving the imagéhwhe Gaussian mask and then
adding the sum of the squares and computing thareqoot of the sum. The ITK filter
“GradientMagnitudelmageFilter” computes the magiatwf the image gradient at each
pixel location using a simple finite differencespegach. The second order derivatives
from each direction are added together to obtaritiplacian operator.

The KNN classifier library used in this researchrkvis a built-in library in C++
named ANN is used to search the nearest neighbaelson spaces of various

dimensions in an approximate or exact manner [h3fe current implementation of the
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classifier to classify the voxels of the testingage into airway and non-airway, the
number of nearest neighbors to be returned byldssifier is set to 15. This means that
for every voxel in the testing image, the indicé4® voxels of the training image which
are closest in distance are returned. The indicegm@ss-checked with the ground-truth
of the testing image to determine if they represbatairway or non-airway voxels. The
probability of every voxel is calculated by takitige ratio of the number of airway
indices returned by the classifier to the total bemof nearest neighbors for that voxel
(15). The higher the probability value of the vorehring the value of 1, the greater is its
chances of being an airway (ideally 1) while thedo the intensity value nearing the O ,
the greater are its chances of being a non-ain®ally 0). The diagrammatic flow of
the image construction is shown in the figure 11.

One of the main advantages of this library is thiditg to allow user to achieve
significant improvements in the running time byetating a small amount of error
(Epsilon) in the search. This means that the dlasseturns a point that may not be the
nearest neighbor, but is not significantly furtl@ray from the query point than the true
nearest neighbor. In other words, when the cla&ssiéturns k distinct nearest neighbor
points from the sample set, such thatik k, the ratio between the distance to tfie i
reported point and the trud' inearest neighbor is at most [1+ This is called the
approximate nearest neighbor searching where tioe leound limit(! (Epsilon) or EPS
is user defined.

Another method implemented, in order to reducetime for classification of
each query voxel by ANN was by using a parallelcpssing thread-safe library named
Simple, Thread-safe Approximate Nearest Neighb®A{SN) instead of ANN [22]. This
library is known to be faster in the constructidnkenearest neighbor graphs, better in
cache efficiency and minimal space utilization.idtbased on the ANN library and

Morton ordering for graph construction to paraplebcess features during classification.

www.manaraa.com



31

DATA POINTS QUERY POINTS

Figure 4. Flow chart of obtaining probability imaigem the KNN classifier

Further, the algorithm performs well for data setsch are too large to reside in
the internal memory but is not suitable for higldémensionality in the feature space
(usually d > 5). The comparison between the ANN &TdNN performance on the

micro-CT data is illustrated in section 4.3.
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CHAPTER 4
RESULTS

4.1 Feature Calculation Results

The feature images for a given CT lung volume alewated at 7 different
scales ranging from 0.01 to 3. The process by wthehfeatures are calculated is
described in section 3.1. It is implemented suct &l the points belonging to the
airway class of the training data set are writteo & text file by randomly selecting
the voxels from the bins created by distance t@nsfas mentioned in section 3.2.
Similarly, the non-airway voxel features from thaining data set are written to 7
different text files by random selection. All thest voxels inside the lung region
are written in a similar way to text files to beadeby the classifier. Some of the
examples of the feature images at a mid-slice @Mtblume are as shown in figure

12.

Ornginal Image Gaussian Image
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Figure 12 - continued

-

First Order Image — I, Gradient hagnitude Image

Figure 12 - continued
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e

Second Order Image — I,

Second OrderImage—1,, second Order Image — I,

Figure 12 - continued
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Second Order Image — Second Order Image — 1

Iz

Laplacian Image Gaussian Curvature Image

Figure 12 - continued
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Hesstan Image — 2

Hessian Image — 1

Ratio of Eigen Value Image (|Ag[/ |, )

Hesstan Image — 2

Figure 12 - continued
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Y g
T 4

Ay Ratio of Eigen Value Image i|A|-|Aa) i/ iRy Aa]d

Ratio of E1gen Value Image {|A;]/

Ratio of Eigen Value Image -Z|3'1.3|.-'N'|3'Ll' Al Eigen Magmitude Image

Figure 12. The set of 21 local image descriptaat(fre images) calculated at scale 1

These features are calculated with seven diffesemidard deviations or scales.
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After the features are calculated, the best suéadures among them are

selected based on their performance with respeat ¢aterion value. The feature

selection procedure as illustrated in section &8ulted in the following set of

features as the best features. The selection puoeedaximized the area under the

ROC curve from 0.68 (for the first best featureestdd) through 0.8 till the last

feature is selected. The feature selection prosest®pped when the area under the

ROC curve reaches a saturation which is indicatgdidgure 13. There was no

significant increase in the area under the ROC euwfter the selection of 12

features.

0.8

0.78

ottt

0.76

4
’0

0.74

0.72

0.7

AreaUnder the ROC Curve

0.68

0.66

5 10

No. of Features Selected

15

Figure 5.Graph showing the criterion value achieved withitiease in the

number of features selected
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We know that the classifier's performance is basadthe type and the
number of training points given to the classifibr.other words, the greater the
number of training points in the data set, thedrett the criterion value achieved

(resulting in better classification) as shown gufie 14.

0.9
0.8

=
06 MR
0.5

0.4
0.3 W 0.2 million

@ 2 million

0.2 0.02 million

Areaunder the ROC curve

0.1

0] 5 10 15

Number of Features Selected

Figure 6.Graph showing the increase in the criterion valith ehangingnumber of
training points

Table 3 gives the details of the various featusdscted by classifying a test
data set of 2 million points based on the trairsegof 2 million points.
The feature numbers as used in the implementataoh ({pased on their

sigma set and type in the program) in this resesiatly is listed in the appendix.

4.3 KNN Classification Results

Figure 15 shows the output probability image old#diras a result of
classification. It also shows the 4 different thh@lsled images after region growing

in the range of 0-0.2, 0-0.4, 0-0.6 and 0-0.8 hyirsgpthe seed point in the Trachea
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No. | Name of the Feature Sigma | ROC curve
1 Gaussian Image 2 0.684248
2 Gradient Magnitude Image 0.5 0.717745
3 Eigen Magnitude Image 1 0.732584
4 Gradient Magnitude Image 1 0.747422
5 Eigen Magnitude Image 3 0.759701
6 Largest Eigen value of Hessian Image 2 0.768203
7 First Order Derivative in Y Image 3 0.773753
8 First Order Derivative in X Image 3 0.779643
9 Second Order Derivative in XX direction 3 0.783964
10 | Second Order Derivative in XY direction 2 0.787715
11 First Order Derivative in Z direction 3 0.790821
12 | Second Order Derivative in ZZ direction 0.793472
13 Eigen value of Hessian Image 0.796331

Table 3.Features selected during the feature selectionadetiith their

corresponding criterion value

The sensitivity and the specificity values for #@me data set are as plotted

in figure 16 as per table 4.

Threshold Range Sensitivity 1-Specificity
0-0.2 0.969969 0.038879
0-0.4 0.934031 0.020526
0-0.6 0.880215 0.007774
0-0.8 0.780267 0.001646

Table €hange in the specificity and sensitivity values
across four threshaldnges
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Mid slice of the probability image WVolume rendenng of the probability 1mage

Probability image thresholded to 0-0 2 Probability image thresholded to 0-0.4

Figure 15- continued
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Probability image thresholded to 0-0 6 Probability image thresholded to 0-0.3

Figure 7.Probability images at 4 different thresholds of, @2, 0.6, and 0.8

1
* i ¢
0.8
L 2
rny
3 06
S 04
vl
0.2
0
0 0.01 0.02 0.03 0.04 0.05
1-Specificity

Figure 8Graph showing the area under the ROC curve from fou
different éshold values

The above classification is performed and the arveggmentation is

obtained on three different images based on thiaing with the same set of
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features. Figure 17 shows the volume rendered wgirtvae results of the
segmentation of three different CT scans. It albows their sensitivity and
specificity curves which have been obtained by canmg each voxel with its
manual segmentation.

The time performance of the STANN library whichkisown to be a multi-
thread safe library for the approximate nearesghi®r calculation is compared
with the ANN library. The number of threads for figram is set to 1 to compare
its time performance with the ANN. It is observéaitthe classification time for a
smaller dimension in feature space is very gooditiddteriorates as the dimension
of the feature increases. Figure 18 shows the dseréen performance with the

increase in the dimensionality of the feature space

Figure 9.Volume rendered airway segmentation for three obfié scans

Sensitivity
n

0.01 0.02 0.03 0.04 0.05

1-Specificity

Volume rendered airway segmetation of scan 1 ROC curve for scan 1

Figure 17 - continued
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Sensitivity

0 0.005 0.01

1-Specificity

Volume rendered airway segmentation of scan 2 ROC curvefor scan 2

Sensitivity
(=]

0 0.01 0.02 0.03 0.04

1-Specificity

WYolume rendered airway segmentation of scan 3 ROC curve for scan 2

Figure 17. Volume rendered airway segmentationtoee different scans
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Figure 18 Graph showing the increase in time per query pwitit the increase in
the number of features (increase in dimension atiuiee space)

It was observed that ANN took about 0.0015 secpment for the KNN-
classification in a 12 dimensional space whichaenssible when compared to the
STANN'’s performance of 0.275 sec per query poirte Tuse of ANN is the one
that is most suitable for classifying the pointgto$ type of image.

In order to optimize the time of classification fimillions of query points
based on the training data set, an error boundrpeiea EPS developed in the ANN
library was changed from O (for exact computatidn) 1 (for approximate
computation).The test was performed to check for the correctrassavell as the
reduction in the computation time when an errorfablimit is accepted with respect to
computing the distance# significant reduction in the classification tinoé a single
query data set was observed which has been shofigune 19.

The decrease in the computation time by acceptingeaor bound KNN
classification did not affect the specificity andnsitivity values greatly. Figure 20
illustrates the change in the sensitivity and dpmtyi values compared with the exact

classification by setting the EPS to 0.
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Figure 19. Graph showing the reduction in the tioreclassification of all the voxels in a
guery image by increasing the error bound limits

0.99 .

0.98 =
0.97
0.96
0.95
0.94 o AEPS1
0.93 WEPS2
0.92
0.91 O

0.9
0.89

£ $EPSO

Sensitivity

< EPS3

K EPS10

EFd

0 0.02 0.04 0.06 0.08

1-Specificity

Figure 20. Graph showing the change in the ROCecuiith the changing error bound
limits.
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CHAPTERS
DISCUSSION

5.1 Advantages of the proposed method

The method proposed in this thesis has severalntatyes compared to the
previous methods. Unlike the previous in-vivo mapevay segmentation methods (based
on image intensities), the current algorithm hetps overcome the difficulty of
segmenting the airways in scans with minimal cattb@tween airways and vasculature.
Thus airway segmentation from an excised mouse \lmgh provides greater detail and
information about the airways is one of the majepaltures of this method from the
previous methods of segmenting airways from anivo-gcan (as described in section
2.6). Also, this algorithm has reduced the requinee for segmenting and analyzing the
airways from one week to three hours. This reducimotime offers a potential for faster
clinical diagnosis of abnormalities and for quickieug trials.

Compared to the previous work done by Shi [10] éhejent only on the
grayscale morphology of the scan) and Artaechev@td] (dependent on the wave front
propagation) on the automatic in-vivo mice airwagraentation, the current algorithm
mainly relies on the voxel probabilities of an ireagplculated using texture, shape and
appearance features. This ensures the segmentasiolts to be based on the information
(as per section 4.1) of the structure to be segedergther than relying on the imaging
intensities of the scan provided by the scannethénwork by Shi, there was a problem
of detecting the in-plane branches and extra-coatioumt complexity of 2D segmentation
to 3D volume reconstruction. Also, in the work bytaechevarria, noise or disease
interruptions in the airway branch would stop thetHer segmentation. The current

algorithm considers the above problems and achisegsientation results by computing
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a 3D segmentation volume using noise removal angttste enhancement features in
classification.

As we know, in pattern recognition techniques,dhb& is classified for assigning
a given piece of input data into one of a given bhemof categories. There are many
classifiers like the maximum entropy classifiergin¢ Bayes classifiers, support vector
machines, decision trees, radial basis functionkandarest neighbor classifiers.

However, the current research has been built opreviously published
framework of airway tree segmentation by K nearesghbor classification [12]. This
previous work done by Lo et al. was implementedl&ssify only the terminal branches
of the human airway tree. Unlike the current metbhbdlassifying all the voxels of the
airway region, the bigger branches (Trachea anchMebdnchi) in the previous method
were segmented using region growing. Another maifderence of the previous method
was in the selection of an optimum threshold (foalf region growing segmentation)
from the ROC curve during the selection of bestuiess step. In the current algorithm,
the probability image is segmented over four equadaced threshold ranges.

Another advantage of this algorithm is that itcamiétically segments the airways
in mice lung with minimal human intervention. A corarcial image based software
diagnostic tool, helps in determining the measurgm®f the airway geometry and

airway reactivity with the help of the segmentatgemerated by the current algorithm.

5.2 Factors influencing the results

There are a few leakages at places along the ain@aywhere there is a very thin
or negligible wall present between the airway dral\tasculature. This is mainly caused
due to the poor resolution of the micro-CT scansciwtshow the wall between the

airways and vessels with minimal contrast. In sgeles, the algorithm detects the
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vessels as a part of the airway which is equalig ladistinguish with the naked eye. An

example of such a case is as shown in figure 2figace 22.

Figure 21. Volume rendering of an incorrectly segtad vessel running parallel to the
airway wall, red arrow shows the vessel Vessel Wwiscparallel to the airway walls is
segmented

Figure 22. Midslice of the scan showing the watlheen the airway and the vessel.
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Another factor that greatly determines the resoltshe segmentation is the
selection of the threshold for region growing ustegnected threshold algorithm. This is
mostly in the range of 0.8 to 0.9 for the prob@piinage but might vary a little for some
images. In cases where this threshold is not apiatepfor a scan, it might result in a
leakage or detection of incorrect region as airw®ylerent values for the threshold may
be tried in the above range in order to achieveirate segmentation. The example is as

shown in figure 23.

Figure 23. Misclassification/Leakage of airways tluéhe incorrect threshold selection
by the user

For segmentation of airways in the scans with wbffié resolution, quality and
structures in the airway tree, the classifier stidug trained again. This is because the
features that show good performance on a set wiirigadata during the training phase

are bound to show similar behavior with other sdaors the similar set.
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CHAPTER 6
CONCLUSION

The voxel classifier presented in this paper offearautomatic tool to perform ex-
Vivo mice airway tree segmentation from a lung wodumicro-CT image. The research
presented in this thesis enables us to detectlamyranalities in the airways. This is made
possible by the algorithm that has been developeddasure the physical dimensions of
the segmented airways. The algorithm is developaseéd on voxel based classification of
an airway structure (unlike the traditional regignowing based algorithms) that
improves the scope for the detection of many braschkhich are missed by traditional
methods. Compared to manual segmentation, the segtiom results of the three micro-
CT images indicate nearly 80% accuracy in airwagct®on based on the sensitivity and
specificity values. The time required to processheacan has also been drastically
decreased with the help of the proposed algoriffinis makes it possible to analyze a
much larger number of scans for the study of lamyital or drug-responsive behavior of

airways.
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APPENDIX

The implementation details of the scales and tygeature images calculated as
per section 3.1 is described here with the helpladwing tables. The representation of a
feature image has two coordinates, the first coatei represents the scale number of the
feature image and the second coordinate represgentgpe/feature number of the feature
image. For example, for the feature image representthe algorithm with coordinates
(5,11), the first coordinate from the scale talkejeresents the scale value (5 means scale
value = 2 ) and the second coordinate represeatypie of feature (11 means scale type
= Eigen value of Hessian Image 1). This is repriegiem is useful only to ease the
implementation and naming of the set of 147 featufée coordinates are the number

representation of the scale and type which carebeded using the following tables.

Scale Number Scale/Standard Deviation
0 0.01
1 0.05
2 0.1
3 0.5
4 1
5 2
6 3

Table Al. Representation of the scale with the
corresponding scale numbers
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Feature Number Feature Name
0 Gaussian Image
1 First Order Derivative in X direction
2 First Order Derivative in Y direction
3 First Order Derivative in Z direction
4 Second Order Derivative with respect to ZZ direction
5 Second Order Derivative with respect to YY direction
6 Second Order Derivative with respect to XX direction
7 Second Order Derivative with respect to YZ direction
8 Second Order Derivative with respect to XZ direction
9 Second Order Derivative with respect to XY direction
10 Gradient Magnitude Image
11 Eigen Value of Hessian Image 1
12 Eigen Value of Hessian Image 2
13 Eigen Value of Hessian Image 3
14 Laplacian Image
15 Gaussian Curvature Image
17 Eigen Ratio Image 1 - (Hessianimage2/Hessianlmagel)
18 Eigen Ratio Image 2 - (Hessianimage3/Hessianimagel)
19 Eigen Ratio Image 3 -
((HessianImagelessianImage2)/(HessianImage1+HessianIma]ge2))

Table A2. Representation of the feature types thigr corresponding feature numbers
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